AbeBookscom: Que nul n'entre ici s'il n'est géomètre : Recueil d'études en droit pénal de Bernard Durand: Gut/Very good: Buch bzw. Schutzumschlag mit wenigen Gebrauchsspuren an Einband, Schutzumschlag oder Seiten. / Describes a book or dust jacket that does show some signs of wear on either the binding, dust jacket or pages. Que nul n'entre ici s'il n'est géomètre", aurait-il même fait inscrire au seuil de l'Académie, à Athènes. Force est de constater qu'il y a, à la fois dans la science géométrique et dans ce qu'elle permet de comprendre selon Platon, le coeur de la démarche scientifique de Bernard Durand. Ses recherches dans la législation et la doctrine, tant française qu'européenne, confrontées Quenul n’entre ici s’il n’est géomètre ! On n'est pas bien certain que ce soit vraiment du Platon, mais c’est pas très grave. Parce que Platon le dit ailleurs, dans son texte intitulé La République : les mathématiques sont la meilleure préparation au travail philosophique : c’est-à-dire à la recherche de la vérité et à la sagesse . Lephilosophe y enseignera pendant une vingtaine d'années, avant de se voir remplacé par son neveu Speusippe. Au fronton de l'école, il était écrit : « Nul n'entre ici s'il n'est géomètre. » En effet, pour Platon, la géométrie (en pure pensée) était un art qu'il fallait maîtriser pour être à ses yeux un philosophe complet. On a Que nul n'entre s'il n'est géomètre » La tradition veut que cette phrase (1) ait été gravée à l'entrée de l'Académie, l'école fondée à Athènes par Platon. Mais que vaut cette tradition ? Vay Tiền Trả Góp Theo Tháng Chỉ Cần Cmnd Hỗ Trợ Nợ Xấu. NUL N’ENTRE ICI SI IL N’EST GEOMETRE »Introduction Cette devise est comme, tout le monde le sait, celle inscrite sur l’école d’Athènes fondée par Platon. Nous pouvons rester perplexes devant cette maxime pour entrer dans une école de philosophie. Pourquoi demander a des élèves de philosophie d’être avant tout des géomètre ? Définition géométrie par géométrie nous pouvons entendre le sens de mathématiques car dans l’a Grèce antique les mathématiques étaient très souvent de la géométrie Pythagore par exemple. Comment définir les mathématiques nous prendrons au départ la définition d’Euclide c’est une machine axiomatique, ces axiomes ne sont pas démontrables mais sont évidents » , à partir de ces axiomes on fonde un système déductif. Et de plus nous faisons le constat que les mathématiques peuvent s’appliquer au réel jusqu’au 20ème. Par exemple le titre complet de l’éthique de Spinoza Éthique démontrée suivant l'ordre cette maxime nous amène à nous interroger sur le lien entre mathématique et philosophie. 1. La question de la méthode En effet beaucoup de philosophes ont admirés les mathématiques et sa méthode rigoureuse par la démonstration, et ont essayés de la reproduire en philosophie, nous voyons donc émerger le premier point qu’est la méthode. Il nous faudra donc voir le lien entre méthode mathématique et La question de la vérité et de la connaissance . Les maths sont souvent considérés comme vraies, en effet elles ont, comme Platon le dira un versant intelligible et un versant sensible, elles s’appliquent au réel tout en restant une abstraction, et en cela on a pdt longtemps considérer les mathématiques comme vraies. Cela dit le 20ème siècle semble avoir largement remis cette affirmation en question, avec les géométries non-euclidiennes… et de plus en plus on a tendance à penserles mathématiques comme une machine basée sur des axiomes et la véracité d’une proposition mathématique serait uniquement basée sur la démonstration mathématique à partir des axiomes. . La philosophie a aussi prétendue au vraie, avec la métaphysique qui visait a chercher les causes, comme le dirait Aristote dans les premières pages de la métaphysique, en effet els mathématiques nous apportent une connaissance pour construire des murs, des ponts via la physique, mais ces connaissance sont-elles vraies ?. On en revient finalement au fait que les mathématiques apporteraient une connaissance comme La question du questionnement et de l’étonnement Question qui découle directement des deux autres, les mathématiques comme la philosophie vise à répondre à des questions, elles demandent un véritable plongeon dans un problème, le creuser… et c’est surement dans cesens que Platon l’entend, les mathématiques permettent d’aiguiser l’esprit, et Platon ne veut peut être non pas trouver la vérité mais aiguiser l’esprit pour sortir de la verrons donc que I. Les mathématiques ont en commun avec la philosophie la même recherche du vrai et une rigueur Mais pour autant on ne peut philosopher de manière mathématique, elles sont tout à fait distinctes une machine bourrée d’axiomes »III. Les mathématiques même si elles ne peuvent pas être assimiler à la philosophie ne sont pas comme la logique, il y a un rôle de l’intuition mathématique comme de l’intuition philosophiqueI. Les mathématiques ont en commun avec la philosophie la même recherche du vrai et une rigueur nécessaire1 Les mathématiques comme une étape pour sortir de la caverne et d’atteindre l’idée, la vérité Nous traitons d’abord de la question de la vérité, les mathématiques sont pour Platon une étape de l’accès à la vérité qui est pour lui intelligible, et donc les mathématiques ont bien indissociables de la philosophie pour atteindre le vrai

que nul n entre ici s il n est geometre